Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Neurophysiol ; 128(6): 1555-1564, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36350063

RESUMO

Neuronal L-type Ca2+ channels of the CaV1.3 subclass are transmembrane protein complexes that contribute to the pacemaker activity in the adult substantia nigra dopaminergic neurons. The altered function of these channels may play a role in the development and progress of neurodegenerative mechanisms implicated in Parkinson's disease (PD). Although L-type channel expression is precisely regulated, an increased functional expression has been observed in PD. Previously, we showed that Parkin, an E3 enzyme of the ubiquitin-proteasome system (UPS) interacts with neuronal CaV2.2 channels promoting their ubiquitin-mediated degradation. In addition, previous studies show an increase in CaV1.3 channel activity in dopaminergic neurons of the SNc and that Parkin expression is reduced in PD. These findings suggest that the decrease in Parkin may affect the proteasomal degradation of CaV1.3, which helps explain the increase in channel activity. Therefore, the present report aims to gain insight into the degradation mechanisms of the neuronal CaV1.3 channel by the UPS. Immunoprecipitation assays showed the interaction between Parkin and the CaV1.3 channels expressed in HEK-293 cells and neural tissues. Likewise, Parkin overexpression reduced the total and membrane channel levels and decreased the current density. Consistent with this, patch-clamp recordings in the presence of an inhibitor of the UPS, MG132, prevented the effects of Parkin, suggesting enhanced channel proteasomal degradation. In addition, the half-life of the pore-forming CaV1.3α1 protein was significantly reduced by Parkin overexpression. Finally, electrophysiological recordings using a PRKN knockout HEK-293 cell line generated by CRISPR/Cas9 showed increased current density. These results suggest that Parkin promotes the proteasomal degradation of CaV1.3, which may be a relevant aspect for the pathophysiology of PD.NEW & NOTEWORTHY The increased expression of CaV1.3 calcium channels is a crucial feature of Parkinson's disease (PD) pathophysiology. However, the mechanisms that determine this increase are not yet defined. Parkin, an enzyme of the ubiquitin-proteasome system, is known to interact with neuronal channels promoting their ubiquitin-mediated degradation. Interestingly, Parkin mutations also play a role in PD. Here, the degradation mechanisms of CaV1.3 channels and their relationship with the pathophysiology of PD are studied in detail.


Assuntos
Canais de Cálcio Tipo L , Doença de Parkinson , Ubiquitina-Proteína Ligases , Humanos , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo
2.
Rev. senol. patol. mamar. (Ed. impr.) ; 35(4): 269-284, oct.-dic. 2022. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-211070

RESUMO

Las mujeres jóvenes (≤40 años) con cáncer de mama suelen tener un peor pronóstico que las mujeres posmenopáusicas, con repercusiones reproductivas y familiares importantes. El tratamiento quimioterapéutico, así como la hormonoterapia, pueden mejorar el pronóstico y la supervivencia libre de enfermedad (SLE); sin embargo, la capacidad individual de metabolizar los fármacos puede modificar la respuesta al tratamiento. Las diferencias interpersonales de esta capacidad tienen una explicación en las variaciones de los genes que codifican las enzimas que metabolizan los quimioterapéuticos y las hormonas endógenas y exógenas. Los genes del citocromo P450 (CYP450), CYP3A4, CYP2B6, CYP2D6 y CYP2C19, están involucrados en el metabolismo de los estrógenos y la ciclofosfamida, los taxanos y el tamoxifeno. La presente revisión expone la evidencia científica del efecto de los polimorfismos funcionales de estos genes sobre la SLE, y sus implicaciones, en las mujeres jóvenes con cáncer de mama. (AU)


Breast cancer prognosis tends to be worse in young women (≤40 years) than in postmenopausal women, with significant reproductive and family repercussions. Both chemotherapy and hormonal therapy can improve prognosis and disease-free survival but treatment response may be influenced by the individual's ability to metabolize drugs. Individual differences in metabolic ability can be explained by variations in the genes encoding the enzymes that metabolize chemotherapeutic agents and hormones. The cytochrome P450 genes CYP3A4, CYP2B6, CYP2D6 and CYP2C19 are involved in the metabolism of estrogen, cyclophosphamide, taxanes, and tamoxifen. This review discusses the scientific evidence of the effect of functional polymorphisms in these genes on disease-free survival and overall survival and its implications for young women with breast cancer. (AU)


Assuntos
Humanos , Feminino , Adulto Jovem , Adulto , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Farmacogenética , Sobrevida , Sistema Enzimático do Citocromo P-450
3.
Cancers (Basel) ; 14(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35406420

RESUMO

Breast cancer (BC) is one of the most frequent cancer types in women worldwide. About 7% is diagnosed in young women (YBC) less than 40 years old. In Mexico, however, YBC reaches 15% suggesting a higher genetic susceptibility. There have been some reports of germline variants in YBC across the world. However, there is only one report from a Mexican population, which is not restricted by age and limited to a panel of 143 genes resulting in 15% of patients carrying putatively pathogenic variants. Nevertheless, expanding the analysis to whole exome involves using more complex tools to determine which genes and variants could be pathogenic. We used germline whole exome sequencing combined with the PeCanPie tool to analyze exome variants in 115 YBC patients. Our results showed that we were able to identify 49 high likely pathogenic variants involving 40 genes on 34% of patients. We noted many genes already reported in BC and YBC worldwide, such as BRCA1, BRCA2, ATM, CHEK2, PALB2, and POLQ, but also others not commonly reported in YBC in Latin America, such as CLTCL1, DDX3X, ERCC6, FANCE, and NFKBIE. We show further supporting and controversial evidence for some of these genes. We conclude that exome sequencing combined with robust annotation tools and further analysis, can identify more genes and more patients affected by germline mutations in cancer.

4.
PLoS One ; 12(9): e0185289, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28957379

RESUMO

N-type calcium (CaV2.2) channels are widely expressed in the brain and the peripheral nervous system, where they play important roles in the regulation of transmitter release. Although CaV2.2 channel expression levels are precisely regulated, presently little is known regarding the molecules that mediate its synthesis and degradation. Previously, by using a combination of biochemical and functional analyses, we showed that the complex formed by the light chain 1 of the microtubule-associated protein 1B (LC1-MAP1B) and the ubiquitin-proteasome system (UPS) E2 enzyme UBE2L3, may interact with the CaV2.2 channels promoting ubiquitin-mediated degradation. The present report aims to gain further insights into the possible mechanism of degradation of the neuronal CaV2.2 channel by the UPS. First, we identified the enzymes UBE3A and Parkin, members of the UPS E3 ubiquitin ligase family, as novel CaV2.2 channel binding partners, although evidence to support a direct protein-protein interaction is not yet available. Immunoprecipitation assays confirmed the interaction between UBE3A and Parkin with CaV2.2 channels heterologously expressed in HEK-293 cells and in neural tissues. Parkin, but not UBE3A, overexpression led to a reduced CaV2.2 protein level and decreased current density. Electrophysiological recordings performed in the presence of MG132 prevented the actions of Parkin suggesting enhanced channel proteasomal degradation. Together these results unveil a novel functional coupling between Parkin and the CaV2.2 channels and provide a novel insight into the basic mechanisms of CaV channels protein quality control and functional expression.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Animais , Membrana Celular/metabolismo , Gânglios Espinais/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ativação do Canal Iônico , Camundongos Endogâmicos BALB C , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Coelhos , Ratos , Proteínas Recombinantes/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
5.
Pflugers Arch ; 466(11): 2113-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24566975

RESUMO

Microtubule-associated protein B is a cytoskeleton protein consisting of heavy and light (LC) chains that play important roles in the regulation of neuronal morphogenesis and function. LC1 is also well known to interact with diverse ionotropic receptors at postsynapse. Much less is known, however, regarding the role of LC1 at presynaptic level where voltage-gated N-type Ca(2+) channels couple membrane depolarization to neurotransmitter release. Here, we investigated whether LC1 interacts with the N-type channels. Co-localization analysis revealed spatial proximity of the two proteins in hippocampal neurons. The interaction between LC1 and the N-type channel was demonstrated using co-immunoprecipitation experiments and in vitro pull-down assays. Detailed biochemical analysis suggested that the interaction occurs through the N-terminal of LC1 and the C-terminal of the pore-forming CaVα1 subunit of the channels. Patch-clamp studies in HEK-293 cells revealed a significant decrease in N-type currents upon LC1 expression, without apparent changes in kinetics. Recordings performed in the presence of MG132 prevented the actions of LC1 suggesting enhanced channel proteasomal degradation. Interestingly, using the yeast two-hybrid system and immunoprecipitation assays in HEK-293 cells, we revealed an interaction between LC1 and the ubiquitin-conjugating enzyme UBE2L3. Furthermore, we found that the LC1/UBE2L3 complex could interact with the N-type channels, suggesting that LC1 may act as a scaffold protein to increase UBE2L3-mediated channel ubiquitination. Together these results revealed a novel functional coupling between LC1 and the N-type channels.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Membrana Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Células Cultivadas , Células HEK293 , Hipocampo/metabolismo , Humanos , Imunoprecipitação/métodos , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...